

SUMMER EDITION 2023

Our Branding

The National Measurement Laboratory (NML) Reference Materials are currently sold under two brands; ERM and LGC. LGC's certified reference materials were branded on release as ERM products between 2006 and 2017. ERM was a joint project between LGC, BAM (https://www.bam.de) and JRC (https://ec.europa.eu/jrc) which is no longer active. All materials released since summer 2017 have been branded as LGC products.

Our UKAS Accreditation

Many of our reference materials and methods of producing them are within our scope for United Kingdom Accreditation Service (UKAS) accreditation, either for reference material production (accredited to ISO 17034:2016) and/or for our calibration methods (accredited to ISO/IEC 17025:2017).

This accreditation provides independent evidence that the reference materials at the NML have been prepared according to best practice. Accredited reference materials display the National Accreditation Symbol alongside them. Questions regarding accreditation for specific reference materials can be sent to measurement@lgcgroup.com.

Disclaimer

While reasonable care has been taken in the preparation of this document, the author does not assume responsibility for errors or omissions in the information contained herein.

Please contact your local LGC Standards office for more information. UK e-mail address is uksales@lgcgroup.com

The UK's National Measurement
Laboratory (for chemical and
bio-measurement) at LGC
produces reference materials
(RMs) used worldwide. Our
portfolio of 118 RMs includes
reference materials, certified
reference materials, and quality
control materials.

Reference Material

As defined in ISO Guide 30:2015, 2.1.1

"Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process"

Certified Reference Material

As defined in ISO Guide 30:2015, 2. 1. 2

"A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability"

Quality Control Material

A material which can be used for demonstrating that a measurement system is under statistical control, performs as expected and provides reliable results; it is a material where the trueness of the measurement result is not critical as long as it is consistent

The National Measurement Laboratory (NML) for chemical and bio-measurement, hosted at LGC, plays a leading role internationally to develop best practice and standardise measurements.

Our science supports manufacture and trade, protects consumers, furthers skills development and enhances quality of life.

Serving as the UK's Designated Institute for chemical and bio-measurement, we provide expert advice to government, industry, healthcare (NHS), academia and support the work of the Government Chemist.

Index

I.	Clinical	11-18
	a. Blood & Serum Materialsb. Clinical Purity Materialsc. Forensic Alcohol Materials	
II.	Environment	19-32
	 a. Ash Materials b. Carbon Isotope Ratio Materials c. Drinking Water Materials d. Environment Purity Materials e. Fresh Water Materials f. Miscellaneous Water Materials g. Sediment Materials h. Sewage Sludge Materials i. Soil Materials 	
III.	Food & Beverage	33-50
	 a. Alcohol Solutions b. Drink Products c. Fish and Fish Products d. Food & Beverage Purity Materials e. Fruit and Vegetable Products f. Animal Feeding Stuffs g. Processed Food Products 	
IV.	Industrial	51-62
	a. Enthalpy of Fusion Materialsb. Flash Point Materialsc. Gypsum Materialsd. Melting Point Materials	
V.	Miscellaneous Materials	63-64
	a. All Miscellaneous Materials	
VI.	Coming soon	65

Clinical

Blood & Serum Materials

ERM-DA110	Human blood - tacrolimus
ERM-DA111	Human blood - sirolimus
ERM-DA200	Frozen human serum - digoxin, high level
ERM-DA201	Frozen human serum - digoxin, low level
ERM-DA250	Frozen human serum - creatinine and electrolytes
ERM-DA251	Frozen human serum - creatinine and electrolytes
ERM-DA252	Frozen human serum - creatinine
ERM-DA253	Frozen human serum - creatinine
ERM-DA345	Frozen human serum - testosterone, high level
ERM-DA346	Frozen human serum - testosterone, low level
LGC8211	Frozen human serum - elements and selenomethionine
LGC8276	Blood – hip replacement wear metals - Cr and Co

Clinical Purity Materials

ERM-AC021	Sirolimus
ERM-AC022	Tacrolimus
ERM-AC200	Digoxin

Forensic Ethanol Materials

LGC5409	Aqueous ethanol - 20 mg/100 mL
ERM-AC510	Aqueous ethanol - 50 mg/100 mL
ERM-AC511	Aqueous ethanol - 67 mg/100 mL
LGC5401	Aqueous ethanol - 80 mg/100 mL
LGC5402	Aqueous ethanol - 107 mg/100 mL
LGC5403	Aqueous ethanol - 200 mg/100 mL

Environment

Ash Materials

LGC6180 Pulverised fuel ash

Carbon Isotope Ratio Materials

ERM-AE672	Glycine - absolute carbon isotope ratio

LGC171-KT Glycine solutions - absolute carbon isotope ratio

Drinking Water Materials

LGC6026	Hard drinking water - metals
LGC6027	Soft drinking water - metals
LGC6028	Hard drinking water - low level metals

Environment Purity Materials

ERM-AC820	3,3',4,4'-tetrachlorobiphenyl (PCB77)
ERM-AC821	3,3',4,4',5-pentachlorobiphenyl (PCB 126)
ERM-AC822	3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169)
ERM-AC823	Polychlorinated biphenyls in 2,2,4 -Trimethylpentane (iso-octane)
LGC1801	Nicotine

Fresh Water Materials

LGC6020	River water - anions
LGC6025	River water - anions

Environment

Miscellaneous Water Materials

LGC6016 Estuarine water - metals
LGC6177 Landfill leachate - metals

Sediment Materials

LGC6187	River sediment - metals
LGC6188	River sediment - PAHs
LGC6189	River sediment - extractable metals

Sewage Sludge Materials

ERM-CC136	Sewage sludge - metals
LGC6181	Sewage sludge - extractable metals
LGC6182	Sewage sludge - PAHs
LGC6184	Sewage sludge - PCBs

Soil Materials

ERM-CC135	Contaminated brickworks soil - metals
LGC6115	Contaminated soil PCBs and PAHs
LGC6145	Contaminated clay loam soil - extractable metal, PAHs and inorganics
LGCQC3013	Loamy sand soil 2 - total petroleum hydrocarbons

Food & Beverage

Alcohol Solutions

1.005404	Deference opinity 5 0/ ADV
LGC5404	Reference spirit - 5 % ABV
LGC5405	Reference spirit - 15% ABV
LGC5406	Reference spirit - 40 % ABV
LGC5412	Reference spirit - 40 % ABV
LGC5407	Reference spirit - 70 % ABV
ERM-BA001	Wine - nominal 5 % ABV
ERM-BA002	Wine - nominal 10 % ABV
ERM-BA003	Wine - nominal 15 % ABV
LGC5000	Brandy - 40 % ABV
LGC5005	Lager - 5 % ABV
LGC5100	Whisky - congeners

Drink Products

ERM-BD011	Orange juice – 1 °Brix
LGC7113	Fruit squash – total SO ₂

Fish and Fish Products

LGC7164	Crab paste	
---------	------------	--

Food & Beverage Purity Materials

ERM-AC301	Butylated hydroxyanisole
ERM-AC303	Leucomalachite green
LGC1110	pp'-DDE
LGC1205	Malathion
LGC7300	Butylated hydroxytoluene
LGC7302	Saccharin
LGC7305	Potassium sorbate
LGC7330	Selenomethionine

Food & Beverage

Fruit and Vegetable Products

LGC7114 Kale powder - nitrate
LGC7162 Strawberry leaves

Animal Feeding Stuffs

LGC7173 Poultry feed – proximates and elements

Processed Food Products

ERM-BC210	Wheat flour - selenium and selenomethionine		
ERM-BD016	Sugar confectionery - sugars		
ERM-BD213	Yeast – total chromium and Cr(III)		
LGC7016	Chocolate confectionery		
LGC7103	Sweet digestive biscuit		
LGCQC101-KT	Chocolate mousse dessert - peanut protein		
LGCQC1020	Peanut flour		
LGC7155	Processed meat - proximates, chloride, hydroxyproline & metals		
LGC7421	Allergen reference material - skimmed milk powder		
LGC7422	Allergen reference material - egg white powder		
LGC7424	Allergen reference material - almond powder		
LGC7425	Allergen reference material - hazelnut powder – partially defatted		
LGC7426	Allergen reference material - walnut powder – partially defatted		
LGC746-KT	Allergen kit – milk, egg, almond, hazelnut and walnut		

Industrial

Enthalpy of Fusion Materials

LGC2601	Indium
LGC2603	Naphthalene
LGC2604	Benzil
LGC2605	Acetanilide
LGC2606	Benzoic acid
LGC2607	Diphenylacetic acid
LGC2608	Lead
LGC2609	Tin
LGC2610	Biphenyl
LGC2611	Zinc
LGC2612	Aluminium
LGC2613	Phenyl salicylate

Flash Point Materials

ERM-FC032	n-Nonane
ERM-FC033	n-Decane

Gypsum Materials

LGC2700	Natural gypsum
LGC2701	Natural anhydrite
LGC2702	Blended gypsum
LGC2703	Desulfurised gypsum

Melting Point Materials

ERM-FC021	Carbazola
ERM-FC022	2-Chloroanthraquinone
ERM-FC023	Anisic acid
ERM-FC024	Diphenylacetic acid
LGC2405	Benzoic acid
ERM-FC026	Acetanilide
ERM-FC027	Benzil
ERM-FC028	Naphthalene
ERM-FC029	4-Nitrotoluene
ERM-FC030	Phenyl salicylate

Miscellaneous materials

ERM-AC316 Solvent yellow 124

ERM-EF212 Petrol - sulfur

ERM-DZ002 Electronic cigarette liquid - nicotine & water

LGCQC5050 Colloidal gold nanoparticle - nominal diameter 30 nm

Clinical

Blood and Serum Materials

Human blood tacrolimus ERM-DA110

Batch: a Unit size: 1 mL

The material was prepared by Analytical Services International (London, UK) by spiking blank pooled human whole blood with a standard solution of tacrolimus to give a nominal concentration of 8 µg/kg tacrolimus in blood.

Characterisation was carried out at LGC using exact matching isotopic dilution mass spectrometry.

This material is intended for use in the calibration of instruments, the validation of new methods, and monitoring the performance of methods commonly used in clinical laboratories to determine the tacrolimus content of human blood samples.

4005

Certified value:

Tacrolimus $7.41 \pm 0.25 \,\mu g/kg$

Additional material information:

Tacrolimus $7.82 \pm 0.25 \,\mu\text{g/L}$

Human blood - sirolimus ERM-DA111

Batch: a Unit size: 1 mL Homogeneity and stability studies have been carried out and an inter-laboratory study of commutability was conducted following the principles of CLSI document EP30-A.

The intended use of this material is for the calibration of instruments and the validation, quality control and performance monitoring of methods to determine sirolimus in human blood. This material will help support laboratories, secondary standards producers and assay developers ensure compliance with ISO15189.

4005

Certified value:

Sirolimus $9.24 \pm 0.52 \,\mu\text{g/kg}$

Additional material information:

Sirolimus $9.73 \pm 0.55 \,\mu g/L$

Frozen human serum digoxin, high level ERM-DA200

Human serum from donors was supplied by Scipac (Sittingbourne, UK), and prepared by Cardiff Bioanalytical Services Ltd.

Batch: a Unit size: 1 mL

This material is intended for the validation of new and existing methods, and monitoring the performance of methods, commonly used in clinical laboratories to determine the digoxin content of human serum samples. It can also be used in the training and evaluation of staff. The material is clinically relevant since it closely matches the upper decision level for digoxin monitoring.

4	0	0	į

Certified value:			
Digoxin	2.08 ± 0.15 μg/kg		
	Additional material information:		
Digoxin	2.74 ± 0.19 nmol/L		
Digoxin	$2.14 \pm 0.15 \mu g/L$		

Frozen human serum digoxin, low level ERM-DA201

Human serum from donors was supplied by Scipac (Sittingbourne, UK), and prepared by Cardiff Bioanalytical Services Ltd.

Batch: a Unit size: 1 mL

This material is intended for use in the validation of new and existing methods, and monitoring the performance of methods, commonly used in clinical laboratories to determine the digoxin content of human serum samples. It can also be used in the training and evaluation of staff. The material is clinically relevant since it closely matches the lower decision level for digoxin monitoring.

4005

Certified value:			
Digoxin	0.845 ± 0.050 μg/kg		
	A LPC Located at Located and Con-		
	Additional material information:		
Digoxin	1.110 ± 0.065 nmol/L		

Frozen human serum ERM-DA250

Human blood serum was obtained from donors at the University Hospital of Wales.

Batch: a Unit size: 1 mL

This material is intended for use in the validation and ongoing monitoring of methods of analysis for the determination of creatinine and electrolytes in human blood samples.

4005

Certified values:				
Creatinine	$39.0 \pm 2 \text{mg/kg}$	Magnesium	47 ± 3 mg/kg	
Calcium	$123 \pm 5 \text{mg/kg}$	Potassium	277 ± 14 mg/kg	
Lithium	$6.6 \pm 0.4 \text{mg/kg}$	Sodium	3370 ± 160 mg/kg	

Frozen human serum ERM-DA251

Human blood serum was obtained from donors at the University Hospital of Wales.

Batch: a Unit size: 1 mL

This material is intended for use in the validation and ongoing monitoring of methods of analysis for the determination of creatinine and electrolytes in human blood samples.

4005

Certified values:				
Creatinine	22 ± 2 mg/kg	Magnesium	19 ± 2 mg/kg	
Calcium	$71 \pm 3 \text{ mg/kg}$	Potassium	136 ± 7 mg/kg	
Lithium	$4.5 \pm 0.3 \text{ mg/kg}$	Sodium	2740 ± 80 mg/kg	

Frozen human serum ERM-DA252

Human blood serum was obtained from donors at the University Hospital of Wales.

Batch: a Unit size: 1 mL

This material is intended for use in the validation and on-going monitoring of methods of analysis for the determination of creatinine in human blood samples.

4005

Certified value:				
Creatinine	$3.1 \pm 0.5 \text{mg/k}$	g		
	_			
Additional material information:				
Calcium	58 mg/kg	Potassium	67 mg/kg	
Lithium	1.3 mg/kg	Sodium	2400 mg/kg	
Magnesium	8.1 mg/kg		U U	

Frozen human serum ERM-DA253

Human blood serum was obtained from donors at the University Hospital of Wales.

Batch: a Unit size: 1 mL This material is intended for use in the validation and ongoing monitoring of methods of analysis for the determination of creatinine in human blood samples.

Certified value:		
Creatinine	50 ± 2 mg/kg	

Frozen human serum – testosterone, high level ERM-DA345

<u>Batch</u>: a <u>Unit size</u>: 0.8 mL Time-expired human blood serum from female donors was spiked with testosterone to bring the concentration within the normal range for male human serum.

This material is intended for use in the validation and ongoing monitoring of methods of analysis for the determination of testosterone in human blood samples.

4005

Certified v	alue:
-------------	-------

Testosterone $5.39 \pm 0.16 \,\mu g/kg$

Frozen human serum – testosterone, low level ERM-DA346

Batch: a Unit size: 0.8 mL Time-expired human blood serum from female donors was used with a concentration within the normal range for female human serum.

This material is intended for use in the validation and ongoing monitoring of methods of analysis for the determination of testosterone in human blood samples.

4005

Testosterone 0.25 ± 0.04 µg/kg

Frozen human serum – elements and selenomethionine LGC8211

Batch: 001 Unit size: 1.1 mL Human serum from a single donor was prepared from blood obtained at the Royal Surrey County Hospital (Guildford, UK).

This material is intended for the validation of new and existing methods, and monitoring the performance of methods, commonly used in clinical laboratories to determine the importance of trace elements copper, selenium and zinc in human serum samples.

Certified values:			
Copper	1130 ± 33 μg/kg		
Zinc	658 ± 33 μg/kg		
Iron	496 ± 22 μg/kg		
Selenium	$64.1 \pm 3.0 \mu \text{g/kg}$		
Selenomethionine	25.0 ± 1.6 µg/kg		

	Additional material data:
Copper	18.18 ± 0.53 μmol/L
Zinc	$10.30 \pm 0.52 \mu mol/L$
Iron	18.18 ± 0.53 µmol/L
Selenium	$0.830 \pm 0.038 \mu mol/L$
Selenomethionine	0.1304 ± 0.0086 μmol/L

Blood – hip replacement wear metals – Cr and Co LGC8276

Batch: 001 Unit size: 1.8 mL The material was prepared by the UK's Trace Elements External Quality Assessment Scheme (TEQAS), (Guildford, UK) by adding the elements of interest to equine blood containing EDTA at a concentration of 1 mg/mL.

This material is intended for use in the calibration of instruments and the validation of new methods commonly used in clinical laboratories to determine the metal content of human blood samples.

	Certified values:
Chromium	6.69 ± 0.28 μg/kg
Cobalt	6.78 ± 0.20 μg/kg

Indicative values:		
Molybdenum	9 μg/kg	
Nickel	5 μg/kg	
Titanium	10 μg/kg	

Clinical Purity Materials

Sirolimus ERM-AC021

Batch: a Unit size: 0.1 g This material was produced from a batch of sirolimus donated by the supplier. It was dispensed into 0. 1 g portions. The purity was assessed by combining data from HPLC-UV, Karl Fischer and TGA.

This material is intended for use in the calibration of instruments, quality control and the validation of methods to determine the immunosuppressant drug sirolimus. It can also be used in the training and evaluation of staff.

400

Certified value:

Purity $98.89 \pm 0.64 \%$ mass

Tacrolimus ERM-AC022

Batch: a Unit size: 0.1 g This material was produced from a batch of tacrolimus monohydrate in powder from kindly donated by Sandoz International GmbH.

Portions of at least 100 mg were dispensed into 1.25 mL amber glass Vials with PTFE lined screw caps and sealed in plastic bags containing desiccant.

This material is intended for use in the calibration of instruments, quality control and the validation of methods to determine the immunosuppressant drug tacrolimus. It can also be used in the training and evaluation of staff.

4005

Certified value:

Purity $97.65 \pm 0.68 \%$ mass

Digoxin ERM-AC200

Batch: a Unit size: 0.5 g A batch of digoxin was obtained from a commercial supplier of reagents. The purity was assessed by combining data from HPLC-UV, Karl Fischer, ICP-OES and GC/MS.

This material is intended for use in the validation and calibration and monitoring of methods to determine digoxin content. It can be used in the training and evaluation of staff.

4005

C4:	ام داء		
Certi		N/PS III	U CAN

Purity 98.0 ± 0.5 % mass

Forensic Ethanol Materials

Aqueous ethanol – 20 mg/100 mL LGC5409

Batch: 003 Unit size: 25 mL This is a solution of ethanol in water at a nominal concentration of 20 mg/100 mL.

This material is primarily intended for use as a reference material for the calibration and validation of methods for the determination of ethanol in biological fluids.

4005

5 0423

Certified value:

Ethanol content $20.1 \pm 0.6 \text{ mg/}100 \text{ mL}$

Aqueous ethanol -50 mg/100 mL ERM-AC510

Batch: a Unit size: 25 mL This material, produced by LGC is a solution of ethanol in water at a nominal concentration of 50 mg/100 mL.

This material is primarily intended for use as a reference material for the calibration and validation of methods for the determination of ethanol in biological fluids.

4005

0423

Certified value:

Ethanol content $49.6 \pm 0.6 \text{ mg/}100 \text{ mL}$

Aqueous ethanol -67 mg/100 mL ERM-AC511

Batch: a Unit size: 25 mL This material, produced by LGC is a solution of ethanol in water at a nominal concentration of 67 mg/100 mL.

This material is primarily intended for use as a reference material for the calibration and validation of methods for the determination of ethanol in biological fluids.

4005

0423

Certified value:

Ethanol content 66.9 ± 0.6 mg/100 mL

Aqueous ethanol -80 mg/100 mL LGC5401

Batch: 039 Unit size: 25 mL This material, produced by LGC, is a solution of ethanol in water at a nominal concentration of 80 mg/100 mL.

This material is primarily intended for use as a reference material for the calibration and validation of methods for the determination of ethanol in biological fluids.

4005

0423

Certified value:

Ethanol content $80.1 \pm 0.6 \text{ mg}/100 \text{ mL}$

Aqueous ethanol -107 mg/100 mL LGC5402

This material, produced by LGC, is a solution of ethanol in water at a nominal concentration of 107 mg/100 mL.

UKAS REFERENCES

0423

Batch: 026 Unit size: 25 mL This material is primarily intended for use as a reference material for the calibration and validation of methods for the determination of ethanol in biological fluids.

4005

Certified value:

Ethanol content $106.9 \pm 0.6 \text{ mg}/100 \text{ mL}$

Aqueous ethanol – 200 mg/100 mL LGC5403

Batch: 024

Unit size: 25 mL

This material, produced by LGC, is a solution of ethanol in water at a nominal concentration of 200 mg/100 mL.

This material is primarily intended for use as a reference material for the calibration and validation of methods for the determination of ethanol in biological fluids.

4005

0423

Certified value:

Ethanol content $199.8 \pm 0.7 \text{ mg}/100 \text{ mL}$

Environment

Ash Materials

Pulverised fuel ash LGC6180

Batch: 001 Unit size: 50 g This material was obtained from a disposal site near Carmarthen Bay in South Wales, UK. Pulverised fuel ash is a waste product of coal-fired power stations.

This material is intended for use in development, validation or quality control of analytical methods for the determination of the extractable metal content in ash based material.

4005

The extractable metal content refers to metals soluble in aqua regia using methods based on ISO 11466:1995.

Assessed values: Extractable metal content				
Aluminium	25700 ± 6300 mg/kg	Magnesium	3660 ± 440 mg/kg	
Arsenic	91.7 ± 14.1 mg/kg	Manganese	$259 \pm 40 \text{ mg/kg}$	
Barium	676 ± 92 mg/kg	Nickel	48.4 ± 12.5 mg/kg	
Calcium	6415 ± 530 mg/kg	Potassium	6170 ± 1680 mg/kg	
Chromium	43.8 ± 11.7 mg/kg	Sodium	1230 ± 480 mg/kg	
Cobalt	18.5 ± 4.3 mg/kg	Vanadium	105 ± 15 mg/kg	
Copper	67.9 ± 11.2 mg/kg	Zinc	115 ± 21 mg/kg	
Lead	48.6 ± 11.3 mg/kg		<u> </u>	

Indicative values:				
Extractable metal content				
Antimony	12 mg/kg	Lithium	46 mg/kg	
Beryllium	2.3 mg/kg	Mercury	0.5 mg/kg	
Boron	25 mg/kg	Selenium	2 mg/kg	
Iron	32900 mg/kg	Titanium	610 mg/kg	

Total metal content			
Aluminium	13100 mg/kg	Magnesium	8500 mg/kg
Antimony	16 mg/kg	Manganese	410 mg/kg
Arsenic	100 mg/kg	Molybdenum	5 mg/kg
Barium	1300 mg/kg	Nickel	110 mg/kg
Beryllium	6 mg/kg	Potassium	29600 mg/kg
Calcium	9200 mg/kg	Selenium	3 mg/kg
Chromium	140 mg/kg	Sodium	5100 mg/kg
Cobalt	41 mg/kg	Tin	7 mg/kg
Copper	130 mg/kg	Titanium	4400 mg/kg
Iron	52400 mg/kg	Vanadium	260 mg/kg
Lead	110 mg/kg	Zinc	260 mg/kg
Lithium	130 mg/kg		

Carbon Isotope Ratio Materials

Glycine – absolute carbon isotope ratio ERM-AE672

Batch: a Unit size: 0.5 g

The material was prepared from a single batch of commercially available high purity glycine and dispensed as ≥ 0.5 g units in 4 mL amber screw top vials.

This material is intended for use in the calibration of instruments, the validation of new methods and the monitoring of the performance of methods used for the determination of carbon isotope ratios. It can also be used for the training and evaluation of staff.

Ce	ertified value:
$n(^{13}C)/n(^{12}C)$ (ratio)	0.010648 ± 0.000031

	Additional material data:
δ 13 C VPDB-LSVEC	- 42.12 ± 0.42 (‰)

Glycine solution- absolute carbon isotope ratio LGC171-KT

Batch: 001 Unit size: 0.5 g The material was prepared from a single batch of commercially available high purity glycine.

This material is intended for use in the calibration of instruments, the validation of new methods and the monitoring of the performance of methods used for the determination of carbon isotope ratios. It can also be used for the training and evaluation of staff.

	Certified values:	
	$n(^{13}C)/n(^{12}C)$ ratio for:	
LGC1711	0.010642 ± 0.000030	
LGC1712	0.010821 ± 0.000030	
LGC1713	0.011227 ± 0.000032	

	Indicative values:
	δ13Cvpdb-lsvec
LGC1711	-42.22 ± 0.34 (‰)
LGC1712	-24.66 ± 0.24 (‰)
LGC1713	+12.55 ± 0.22 (‰)

Drinking Water Materials

Hard drinking water UKmetals LGC6026

Batch: 003 Unit size: 250 mL Hard drinking water was sourced from Lichfield (Staffordshire, UK) potable mains supply. The water was filtered through a set of 8 μ m, 1.2 μ m and 0.45 μ m in-line filter and acidified to approximately 0.1% nitric acid and pH <2.0.

This material is primarily intended for use in development, validation or quality control of analytical methods for the determination of elements in hard drinking water. The material may also be applicable to other similar matrices where more closely matched reference materials are not available.

4005

	Certifi	ed values:	
Aluminium	199.9 ± 6.1 µg/L	Lithium	11.24 ± 0.58 μg/L
Antimony	$4.99 \pm 0.17 \mu g/L$	Magnesium	18.50 ± 0.76 mg/L
Arsenic	$10.00 \pm 0.31 \mu g/L$	Manganese	48.4 ± 1.5 μg/L
Barium	$116.1 \pm 3.5 \mu g/L$	Molybdenum	$4.77 \pm 0.25 \mu g/L$
Beryllium	$5.08 \pm 0.26 \mu g/L$	Nickel	19.00 ± 0.72 μg/L
Boron	$983 \pm 26 \mu g/L$	Potassium	5.30 ± 0.15 mg/L
Cadmium	$4.98 \pm 0.15 \mu g/L$	Selenium	10.19 ± 0.59 μg/L
Calcium	$77.1 \pm 2.2 \text{ mg/L}$	Sodium	24.60 ± 0.79 mg/L
Chromium	50.0 ± 1.9 μg/L	Strontium	491 ± 20 μg/L
Cobalt	$4.88 \pm 0.17 \mu g/L$	Thallium	5.11 ± 0.42 μg/L
Copper	2017 ± 56 μg/L	Uranium	4.95 ± 0.40 μg/L
Iron	$198.4 \pm 5.5 \mu g/L$	Vanadium	4.96 ± 0.15 μg/L
Lead	$9.98 \pm 0.14 \mu g/L$	Zinc	621 ± 19 µg/L

Soft drinking water – metals LGC6027

Batch: 001 Unit size: 250 mL Soft drinking water was sourced from the Bury (Lancashire, UK) potable mains supply.

This material is intended for use in development, validation or quality control of analytical methods for the determination of metals in soft drinking water.

4005

	Certi	fied values:	
Aluminium	196.1 µg/L	Manganese	49.9 μg/L
Antimony	5.21 µg/L	Molybdenum	4.62 μg/L
Arsenic	10.00 µg/L	Nickel	20.01 µg/L
Barium	115.7 µg/L	Selenium	10.21 μg/L
Beryllium	5.09 µg/L	Strontium	496 μg/L
Boron	1006 μg/L	Thallium	4.88 μg/L
Cadmium	5.09 µg/L	Uranium	4.95 µg/L
Chromium	49.9 µg/L	Vanadium	4.93 µg/L
Cobalt	4.87 μg/L	Zinc	613 µg/L
Copper	1995 µg/L	Calcium	8.53 µg/L
Iron	200.0 μg/L	Magnesium	1.026 µg/L
Lead	10.15 μg/L	Potassium	0.367 μg/L
Lithium	10.41 µg/L	Sodium	4.36 µg/L

Hard drinking water – metals LGC6028

Batch: 001 Unit size: 250 mL Hard drinking water was sourced from the Tamworth (Staffordshire, UK) potable mains supply.

This reference material is primarily intended for use in the development, validation or quality control of analytical methods for the determination of metals in hard drinking water. The material may also be applicable to other similar matrices where more closely matched reference materials are not available.

	Certific	ed values:	
Aluminium	20.1 μg/L	Molybdenum	2.20 μg/L
Antimony	5.02 µg/L	Nickel	4.85 µg/L
Arsenic	4.98 μg/L	Selenium	5.13 μg/L
Barium	92.8 μg/L	Strontium	193.8 µg/L
Beryllium	2.05 µg/L	Thallium	4.98 µg/L
Boron	76.2 μg/L	Uranium	4.90 μg/L
Cadmium	0.970 µg/L	Vanadium	1.908 µg/L
Chromium	9.76 µg/L	Zinc	58.2 μg/L
Cobalt	4.66 μg/L	Calcium	79.6 mg/L
Copper	36.0 µg/L	Magnesium	13.30 mg/L
Lead	1.033 µg/L	Potassium	4.91 mg/L
Lithium	10.44 μg/L	Sodium	23.47 mg/L
Manganese	4.74 μg/L		

Environment Purity Materials

3,3',4,4'-tetrachlorobiphenyl (PCB77) ERM-AC820

Batch: a Unit size: 0.02 g A batch of PCB 77 was obtained from a commercial supplier.

This material is primarily intended as a calibration standard in methods of analysis of PCB 77 in environmental and other relevant matrices.

4005

	Certified value:
Purity	99.8 + 0.2/- 0.3 mass %

3,3',4,4',5pentachlorobiphenyl (PCB 126) ERM-AC821

Batch: a Unit size: 0.02 g

A batch of PCB 126 was obtained from a commercial supplier.

This material is primarily intended as a calibration standard in methods of analysis of PCB 126 in environmental and other relevant matrices.

4005

	Certified value:
Purity	98.9 ± 0.3 mass %

3,3',4,4',5,5'hexachlorobiphenyl (PCB 169) ERM-AC822

Batch: a Unit size: 0.02 g

A batch of PCB 169 was obtained from a commercial supplier.

This material is primarily intended as a calibration standard in methods of analysis of PCB 169 in environmental and other relevant matrices.

	Certified value:
Purity	99.4 + 0.6 / - 1.3 mass %

Polychlorinated biphenyls in 2,2,4-trimethylpentane (iso-octane) ERM-AC823

Batch: a Unit size: 1.2 mL

This material was prepared by a commercial manufacturer to a specification produced by LGC. High purity PCB (polychlorinated biphenyl) standards were combined gravimetrically to produce a solution containing 15 PCB congeners in 2,2,4-trimethylpentane (iso-octane). The solution was divided into 1.2 mL portions sealed in amber glass ampoules.

This material is intended for method validation purposes and for checking instrument calibration for the measurement of polychlorinated biphenyls.

Certified values:	
2,4,4' – trichlorobiphenyl (PCB28)	703 ± 15 μg/kg
2,2',5,5' - tetrachlorobiphenyl (PCB52)	706 ± 7 μg/kg
2,2',4,5,5' – pentachlorobiphenyl (PCB101)	696 ± 7 µg/kg
2,3',4,4',5 – pentachlorobiphenyl (PCB 118)	712 ± 9 µg/kg
2,2',3,4,4',5' - hexachlorobiphenyl (PCB138)	678 ± 37 µg/kg
2,2',4,4',5,5 - hexachlorobiphenyl (PCB153)	702 ± 8 μg/kg
2,2',3,4,4',5,5' - heptachlorobiphenyl (PCB180)	$700 \pm 9 \mu g/kg$

Indicative values:	
2,4',5 - trichlorobiphenyl (PCB31)	697 μg/kg
3,3',4,4 '- tetrachlorobiphenyl (PCB77)	697 μg/kg
2,3,3',4',6 - pentachlorobiphenyl (PCB110)	690 µg/kg
2,2',3,4',5',6 - hexachlorobiphenyl (PCB149)	695 µg/kg
2,3,3',4',5,6 - hexachlorobiphenyl (PCB163)	689 µg/kg
2,2',3,3',4,4',5 - heptachlorobiphenyl (PCB170)	693 µg/kg
2,2',3,4',5,5',6 - heptachlorobiphenyl (PCB187)	693 µg/kg
2,2',3,3',4,4',5,5' - octachlorobiphenyl (PCB194)	693 µg/kg

Nicotine LGC1801

Batch: 004 Unit size: 0.6 mL This material is intended for use in checking the analytical procedures applied in the analysis of tobacco smoke condensate and of pesticide residues and formulations.

4005

	Certified value:
Purity	99.57 ± 0.32 mass %

Fresh Water Materials

River water – anions LGC6020

Batch: 002 Unit size: 250 mL Collected from Menethorpe Beck, Yorkshire, UK. A soluble copper salt solution was added (as a biocide) to provide a copper concentration of 2.7 mg/L. The levels of phosphate and fluoride were adjusted by spiking the base material with high purity salts to achieve the target concentrations. The solution was thoroughly mixed and filtered sequentially through 8 μm , 1.2 μm and 0.45 μm membrane filters and 250 mL aliquots were sub-sampled into tamper evident screw-cap amber glass bottles.

This material is intended for use in development, validation, or quality control of analytical methods for the determination of anions in river waters.

4005

Certified values:			
Chloride	33.1 ± 1.2 mg/L	Fluoride	$0.273 \pm 0.023 \text{ mg/L}$
Nitrate	28.2 ± 1.2 mg/L	Sulfate	82.8 ± 2.4 mg/L

Indicative value:		
Phosphate	0.003 - 0.300 mg/L (Range of inter-laboratory results)	

River water – anions LGC6025

Batch: 001 Unit size: 250 mL Collected from Menethorpe Beck, Yorkshire, UK, the water was filtered sequentially through 8.0 μ m and 0.2 μ m membrane filters before the addition of a soluble copper salt solution (as a biocide) to provide a copper concentration of 1 mg/L.

The levels of phosphate and fluoride were adjusted by spiking the base material with high purity salts to achieve the target concentrations. This material is intended for use in development, validation, or quality control of analytical methods for the determination of anions in river waters.

Certified values:				
Chloride 31.3 ± 1.3 mg/L Fluoride 1.248 ± 0.074 mg/L				
Nitrate	$38.0 \pm 1.6 \text{mg/L}$	Sulfate	66.2 ± 1.8 mg/L	

	Indicative values:
Phosphate	0.08-1.61 mg/L (Range of inter-laboratory results)

Miscellaneous Water Materials

Estuarine water trace metals LGC6016

Batch: 001 Unit size: 50 mL Collected from the Severn Estuary, UK, offshore from a heavily industrialised area near Avonmouth.

This material is intended for use in development, validation or quality control of analytical methods for the determination of metals in estuarine water.

4005

	Certif	fied values:	
Cadmium	101 ± 2 μg/kg	Manganese	976 ± 31 μg/kg
Copper	190 ± 4 µg/kg	Nickel	186 ± 3 μg/kg
Lead	196 ± 3 µg/kg		

	Ind	licative values:	
Calcium	220 mg/L	Sodium	4700 mg/L
Magnesium	570 mg/L	Zinc	55 μg/L
Potassium	180 mg/L		

Landfill leachate – trace metals LGC6177

Batch: 001 Unit size: 50 mL Leachate collected from a landfill site in Loughborough Leicestershire, UK.

This material is intended for use in development, validation or quality control of analytical methods for the determination of metals in landfill leachate. This material may also be applicable to other matrices where more closely matched reference materials are not available.

Assessed values:			
Boron	$9.8 \pm 0.5 \text{mg/L}$	Manganese	0.14 ± 0.02 mg/L
Calcium	$74.8 \pm 1.7 \text{mg/L}$	Nickel	$0.21 \pm 0.02 \text{mg/L}$
Chromium	$0.18 \pm 0.02 \text{mg/L}$	Phosphorus	11.5 ± 1.5 mg/L
Iron	$3.8 \pm 0.2 \text{ mg/L}$	Potassium	780 ± 14 mg/L
Manganese	73.5 ± 2.7 mg/L	Sodium	1750 ± 29 mg/L

Sediment Materials

River sediment LGC6187

Batch: 001 Unit size: 80 g River sediment obtained from a monitoring station lagoon on the River Elbe close to the Czech-German border.

This material is intended for use in the development, validation or quality control of analytical methods for the determination of extractable metals in river sediment. The material may also be applicable to other matrices where more closely matched reference materials are not available.

4005

	Certified v	/alue:	
Arsenic	24.0 ± 3.2 mg/kg	Mercury	$1.4 \pm 0.1 \text{mg/kg}$
Cadmium	$2.7 \pm 0.3 \text{mg/kg}$	Nickel	$34.7 \pm 1.7 \text{mg/kg}$
Chromium	84.0 ± 9.4 mg/kg	Selenium	1.2 ± 0.2 mg/kg
Copper	$83.6 \pm 4.1 \text{ mg/kg}$	Tin	$6.8 \pm 1.8 \text{mg/kg}$
Iron	23600 ± 1500 mg/kg	Vanadium	$38.3 \pm 6.5 \text{mg/kg}$
Lead	77.2 ± 4.5 mg/kg	Zinc	439 ± 26 mg/kg
Manganese	1240 ± 60 mg/kg		

Indicative value:		
Weight Loss on ignition	12 g/100 g	

River sediment – PAHs LGC6188

Batch: 001 Unit size: 30 g River sediment was taken from a monitoring station lagoon on the river Elbe close to the Czech- German border.

This material is intended for use in development, validation or quality control of analytical methods for the determination of polyaromatic hydrocarbons (PAHs) in sediments.

4005

Assessed values:		
Phenanthrene	0.74 ± 0.29 mg/kg	
Anthracene	0.231 ± 0.081 mg/kg	
Fluoranthene	1.52 ± 0.32 mg/kg	
Pyrene	1.24 ± 0.50 mg/kg	
Chrysene	0.63 ± 0.16 mg/kg	
Benzo[a]anthracene	$0.60 \pm 0.19 \text{ mg/kg}$	
Benzo[b]fluoranthene	0.68 ± 0.18 mg/kg	
Benzo[k]fluoranthene	0.323 ± 0.084 mg/kg	
Benzo[a]pyrene	0.51 ± 0.16 mg/kg	
Dibenzo[a,h]anthracene	0.86 ± 0.023 mg/kg	
Benzo[g,h,i]perylene	$0.35 \pm 0.12 \text{mg/kg}$	

Indicative values:		
Acenaphthylene	0.05 mg/kg	
Acenaphthene	0.03 mg/kg	
Fluorene	0.05 mg/kg	
Indeno[1,2,3-cd]pyrene	0.4 mg/kg	
Naphthalene	0.2 mg/kg	

Indicative value:		
Weight loss on drying	2.0 g/100 g	

River sediment – extractable metals LGC6189

Batch: 001 Unit size: 30 g A river sediment was taken from a monitoring station lagoon on the river Elbe, in the Czech Republic, close to the Czech-German border.

This material is intended for use as a reference material in the development, validation or quality control of analytical methods for the determination of extractable metals in sediments.

Assessed values:		
Arsenic	26 ± 2 mg/kg	
Cadmium	$3.3 \pm 0.5 \text{ mg/kg}$	
Chromium	93 ± 8 mg/kg	
Copper	87 ± 8 mg/kg	
Manganese	1120 ± 60 mg/kg	
Molybdenum	1.2 ± 0.1 mg/kg	
Nickel	34 ± 3 mg/kg	
Lead	87 ± 6 mg/kg	
Zinc	460 ± 30 mg/kg	

Sewage Sludge Materials

Sewage sludge—metals ERM-CC136

Batch: a Unit size: 25 g Aged sewage sludge collected from a disused sewage works site at Heathrow in London, UK. Dried, sterilised and ground to a powder. The extractable metal content refers to metals soluble in aqua regia using methods based on ISO 11466:1995.

This material is intended for use as a reference material in the development, validation or quality control of analytical methods for the determination of extractable metals in sewage sludge.

4005

Assessed values:			
Aluminium	15100 ± 5400 mg/kg	Magnesium	2820 ± 540 mg/kg
Barium	633 ± 195 mg/kg	Manganese	544 ± 32 mg/kg
Chromium	399 ± 32 mg/kg	Nickel	130 ± 10 mg/kg
Cobalt	23.2 ± 3.6 mg/kg	Potassium	2030 ± 844 mg/kg
Copper	464 ± 21 mg/kg	Sodium	397± 64 mg/kg
Iron	22200 ± 2780 mg/kg	Zinc	890 ± 140 mg/kg
Lead	341 ± 18 mg/kg		

Sewage sludge – extractable metals LGC6181

Batch: 001 Unit size: 100 g This material is a digested sewage sludge of mixed origin which was taken from a city water treatment plant immediately after discharge from a digestion tank.

This material is intended for use in development, validation or quality control of analytical methods for the determination of extractable metals in sewage sludge.

The extractable metal content refers to metals soluble in hot Aqua Regia using methods based on ISO 11466:1995.

Certified values:			
Arsenic	7.8 ± 0.9 mg/kg	Manganese	454 ± 23 mg/kg
Cadmium	$5.8 \pm 0.3 \text{mg/kg}$	Mercury	$4.9 \pm 0.4 \text{mg/kg}$
Chromium	78 ± 8 mg/kg	Nickel	45 ± 3 mg/kg
Copper	354 ± 18 mg/kg	Silver	55 ± 5 mg/kg
Iron	40300 ± 2300 mg/kg	Vanadium	20 ± 2 mg/kg
Lead	105 ± 8 mg/kg	Zinc	1100 ± 50 mg/kg

Sewage sludge – PAHs LGC6182

Batch: 001 Unit size: 30 g Digested sewage sludge of mixed origin was taken from a city water treatment plant immediately after discharge from a digestion tank.

This material is intended for use in development, validation or quality control of analytical methods for the determination of PAHs in sewage sludge.

	4	0	0	5
--	---	---	---	---

Assessed values:		
Naphthalene	0.20 ± 0.13 mg/kg	
Fluorene	$0.159 \pm 0.068 \text{mg/kg}$	
Anthracene	0.162 ± 0.067 mg/kg	
Fluoranthene	$1.35 \pm 0.26 \text{ mg/kg}$	
Pyrene	1.26 ± 0.43 mg/kg	
Chrysene	$0.76 \pm 0.18 \text{ mg/kg}$	
Benzo[a]anthracene	0.56 ± 0.21 mg/kg	
Benzo[b]fluoranthene	$0.71 \pm 0.14 \text{ mg/kg}$	
Benzo[a]pyrene	0.406 ±0.087 mg/kg	
Indeno[1,2,3-cd]pyrene	$0.36 \pm 0.15 \text{ mg/kg}$	
Benzo[ghi]perylene	0.46 ± 0.27 mg/kg	

Indicative values:		
Acenaphthylene	0.4 mg/kg	
Dibenzo(a,h)anthracene	0.09 mg/kg	
Acenaphthene	0.09 mg/kg	
Benzo[k]fluoranthene	0.3 mg/kg	
Phenanthrene	0.8 mg/kg	

Sewage sludge – PCBs LGC6184

Batch: 001 Unit size: 30 g Digested sewage sludge of mixed origin, taken from a city water treatment plant in the Czech Republic, immediately after discharge from a digestion tank.

This material is intended for use in development, validation or quality control of analytical methods for the determination of polychlorinated biphenyls in sewage sludge.

4005

Certified values:		
PCB 101	37 ± 3 μg/kg	
PCB 118	17 ± 2 μg/kg	
PCB 153	112 ± 8 μg/kg	

Soil Materials

Contaminated brick works soil ERM-CC135

Batch: a Unit size: 50 g

This material is a contaminated soil that was obtained from a brickworks site in Hackney, London.

This material is intended for use as a reference material in the development, validation or quality control of analytical methods for the determination of extractable metals and total metals in soils.

4005

The extractable metal content refers to metals soluble in aqua regia using methods based on ISO11466 (1995).

Certified values:			
Aluminium	22700 ± 4600 mg/kg	Potassium	5100 ± 920 mg/kg
Barium	134 ± 10 mg/kg	Magnesium	$7000 \pm 580 \text{ mg/kg}$
Beryllium	1.4 ± 0.4 mg/kg	Manganese	348 ± 18 mg/kg
Calcium	21900 ± 520 mg/kg	Sodium	362 ± 44 mg/kg
Cobalt	20 ± 4 mg/kg	Nickel	277 ± 13 mg/kg
Chromium	336 ± 28 mg/kg	Lead	391 ± 16 mg/kg
Copper	105 ± 5 mg/kg	Selenium	$0.9 \pm 0.3 \text{mg/kg}$
Iron	40900 ± 2700 mg/kg	Vanadium	78 ± 11 mg/kg
Mercury	$3.2 \pm 0.4 \text{mg/kg}$	Zinc	316 ± 41 mg/kg

Additional ma	terial information:
Lithium	20 mg/kg
Molybdenum	20 mg/kg
Tin	35 mg/kg
Titanium	200 mg/kg

Total metal content:		
Aluminium	50000 mg/kg	
Beryllium	2 mg/kg	
Cobalt	28 mg/kg	
Lithium	54 mg/kg	
Molybdenum	26 mg/kg	
Tin	37 mg/kg	
Titanium	3400 mg/kg	
Selenium	1 mg/kg	

Contaminated soil – PCBs and PAHs LGC6115

Batch: 001 Unit size: 50 g This material was sourced and prepared under contract by an experienced commercial laboratory.

This material is intended for use in validating methods for the determination of PCBs and PAHs in soil materials.

Certified values:			
PCB101	93 ± 7 μg/kg	Benzoanthracene	36 ± 1 mg/kg
PCB118	116 ± 4 μg/kg	Benzopyrene	13 ± 0.02 mg/kg
Phenanthrene	178 ± 6 mg/kg	Benzoperylene	$0.33 \pm 0.06 \text{ mg/kg}$
Fluoranthene	312 ± 7 mg/kg		

Contaminated clay loam soil – extractable metals, PAHs and inorganics LGC6145

Batch: 001 Unit size: 50 g This material was blended from two soils, sourced from the Czech Republic and one soil sourced from the UK.

This material is intended for use in validating methods for the determination of metals in soil materials.

The extractable metal content refers to metals soluble in aqua regia using methods based on ISO 11466:1995.

4	0	0	5

Certified values: Extractable Metal Content			
	Extractable	e Metal Content	
Arsenic	38.7 ± 1.2 mg/kg	Nickel	39.0 ± 2.5 mg/kg
Cadmium	$0.65 \pm 0.07 \text{ mg/kg}$	Selenium	1.81 ± 0.13 mg/kg
Chromium	47.6 ± 1.8 mg/kg	Vanadium	53.9 ± 2.3 mg/kg
Copper	62.2 ± 3.6 mg/kg	Zinc	137 ± 6 mg/kg
Lead	45.1 ± 2.3 mg/kg		

Assessed values:		
Phenanthrene	325 ± 26 mg/kg	
Chrysene	45 ± 9 mg/kg	
Benzo[b]fluoranthene	12 ± 3 mg/kg	
Indeno[1,2,3-cd] pyrene	0.97 ± 0.28 mg/kg	
Water soluble chloride	65 ± 9 mg/kg	
Water soluble sulfate	$5.3 \pm 0.7 \text{ g/L}$	

Loamy sand soil 2 – total petroleum hydrocarbons LGCQC3013

Batch: 001 Unit size: 100 g This material was prepared from a soil sample obtained from a contaminated electricity sub-station site in the UK.

This material is intended for use as a quality control material for analytical methods used in the investigation of soil for TPH contamination.

Indicative values:		
Textural classification - loamy sand soil		
Sand: 2.00 - 0.063 mm	87 %	
Silt: 0.063 – 0.002 mm	6 %	
Clay: < 0.002 mm	7 %	

	Indicative value:	
TPH (C10 – C40)	4100 mg/kg	

Food & Beverage

Alcohol Solutions

Reference spirit – 5 % ABV LGC5404 A suitable supply of ethanol was obtained, checked for purity and diluted with water to produce a solution with a nominal ethanol concentration of 5 % ABV.

Batch: 021 Unit size: 25 mL The primary use of this reference material is for checking the calibration of automatic density meters commonly used in industry to determine alcoholic strength, and for checking analyst and method performance.

	Certified values:	
Alcohol strength	5.02 ± 0.04 % ABV	
Density	989.98 ± 0.04 kg/m ³	

Reference spirit – 15 % ABV LGC5405 A suitable supply of ethanol was obtained, checked for purity and diluted volumetrically with water to produce a solution with a nominal ethanol concentration of 15% alcohol by volume.

Batch: 012 Unit size: 25 mL

The primary use of this reference material is for checking the calibration of automatic density meters commonly used in industry to determine alcoholic strength, and for checking analyst and method performance.

	Certified values:
ength	14.99 ± 0.04 % ABV
	$977.93 + 0.05 \text{ kg/m}^3$

Reference spirit -40 % ABV LGC5406 A suitable supply of ethanol was obtained, diluted volumetrically with water to produce a solution with a nominal ethanol concentration of 40 % ABV.

Alcohol stre Density

Batch: 020 Unit size: 25 mL The primary use of this reference material is for checking the calibration of automatic density meters commonly used in industry to determine alcoholic strength, and for checking analyst and method performance.

4005

	Certified values:	
Alcohol strength	40.05 ± 0.04 % ABV	
Density	946.91 ± 0.06 kg/m ³	

Reference spirit -40% ABV LGC5412 A suitable supply of ethanol was obtained, diluted volumetrically with water to produce a solution with a nominal ethanol concentration of 40 % ABV.

Batch: 003 Unit size: 50 mL The primary use of this reference material is for checking the calibration of automatic density meters commonly used in industry to determine alcoholic strength, and for checking analyst and method performance.

	Certified values:
Alcohol strength	40.03 ± 0.04 % ABV
Density	946.94 ± 0.06 kg/m ³

Reference spirit -70 % ABV LGC5407 A suitable supply of ethanol was obtained, diluted volumetrically with water to produce a solution with a nominal ethanol concentration of 70 % ABV.

Batch: 007 Unit size: 25 mL The primary use of this reference material is for checking the calibration of automatic density meters commonly used in industry to determine alcoholic strength, and for checking analyst and method performance.

4005

	Certified values:	
Alcohol strength	70.07 ± 0.03 % ABV	
Density	$884.33 \pm 0.07 \text{ kg/m}^3$	

Wine - nominal 5 % ABV ERM-BA001 A suitable supply of wine was obtained from a commercial source. The wine was stabilised with the addition of sodium metabisulfite and citric acid and thoroughly mixed.

Batch: a Unit size: 250 mL This material is intended for use as a reference material for the validation of methods for the determination of alcohol content in alcoholic beverages.

4005

Certified value:		
Alcohol strength	5.37 ± 0.05 % ABV (at 20 °C)	

Wine - nominal 10 % ABV ERM-BA002 A suitable supply of wine was obtained from a commercial source. The wine was stabilised with the addition of sodium metabisulfite and citric acid and thoroughly mixed.

Batch: a Unit size: 250 mL This material is intended for use as a reference material for the validation of methods for the determination of alcohol content in alcoholic beverages.

	Certified value:
Alcohol strength	10.12 ± 0.04 % (at 20 °C)

Wine - nominal 15 % ABV ERM-BA003

Batch: a Unit size: 250 mL A suitable supply of wine was obtained from a commercial source. The wine was stabilised with the addition of sodium metabisulfite and citric acid and thoroughly mixed.

This material is intended for use as a reference material for the validation of methods for the determination of alcohol content in alcoholic beverages.

4005

	Certified value:
Alcohol strength	14.47 ± 0.10 % (at 20 °C)

Brandy - 40 % ABV LGC5000

Batch: 004 Unit size: 50 mL A supply of brandy was obtained from a commercial source.

This material is intended to be used for calibration of density meters and the validation of methods for the determination of alcoholic strength in obscured spirits by the UK statutory method of distillation and density measurement.

4005

Certified value:			
Apparent alcoholic strength	37.834 + 0.034 / - 0.035 % ABV		
Actual alcoholic strength	40.075 + 0.070 / - 0.067% ABV		
Apparent density	950.376 ± 0.056 kg/m ³		

Lager - 5 % ABV LGC5005

Batch: 003 Unit size: 330 mL Unfiltered 4.8 % ABV lager, packed in 330 mL plain white ring-pull aluminium cans, was purchased from a UK brewery. The material was treated sing a batch pasteuriser at 20 pasteurisation units by an external organisation.

The primary use of this reference material is for checking the calibration of automatic density meters commonly used in industry to determine alcoholic strength of alcohol/water mixtures and for checking analyst and method performance.

	Certified value:
Alcohol strength	4 83 ± 0 06 %

Whisky - congeners LGC5100

A suitable supply of whisky was obtained from a commercial source.

Batch: 002 Unit size: 10 mL This material is intended for use in development, validation or quality control of analytical methods for the determination of congeners in spirit samples. The material may also be applicable to other matrices where suitable reference materials are not available.

4005

Certified values:		
Methanol	5.20 ± 0.32 g/100 L	
Propanol	57.0 ± 2.4 g/100 L	
2-Methyl propanol	58.8 ± 3.1 g/100 L	
2-Methyl butanol	21.38 ± 0.70 g/100 L	
3-Methyl butanol	58.2 ± 2.1 g/100 L	
Butanol	0.48 ± 0.11 g/100 L	

Indicative values:		
Ethyl acetate	16 g/100 L of alcohol	
Furfural	0.82 g/100 L of alcohol	
Apparent alcohol content	40.06 % ABV	

Drink Products

Orange juice ERM-BD011

Commercially obtained orange juice was diluted with water.

Batch: a Unit size: 3 mL

This material is intended for use as a reference material in the development, validation, or quality control of analytical methods for the determination of degrees Brix or refractive index of sugar solutions and food extracts.

4005

	Certified values:	
Degrees brix	1.26 ± 0.08	
Refractive index	1.3348 ± 0.0002	

Fruit squash – total SO₂ LGC7113

Batch: 001 Unit size: 55 mL The material was prepared using a commercially sourced Cranberry and raspberry squash which was spiked with sodium metabisulfite to raise the SO₂ concentration to the required level.

This material is intended for use in the development, validation or quality control of analytical methods for the determination of total SO_2 in beverages.

Certified value:

Total sulfur dioxide 255 ± 41 mg/L

Fish and Fish Products

Crab paste proximates and elements LGC7164

Batch: 001 Unit size: 140 g Brown crab meat purchased from a commercial supplier was blended with small amounts of sodium polyphosphate, sodium chloride and water to a smooth paste. The paste was dispensed into cans, sealed and then heat treated to ensure sterility.

For constituents where the assigned value is described as Certified or Assessed, the intended use of this material is for the development, validation, (including the assessment of method bias), and quality control of methods for the analysis of crab and seafood products. Where the assigned value is described as Indicative, the material is suitable for monitoring the performance of a method or analyst, but not suitable for assessing method bias. The material may also be applicable to other similar matrices and procedures where suitable reference materials are not available.

4005

Certified values:				
Moisture	59.26 ± 0.56 g/100 g	Lead	0.0697 ± 0.0047 mg/kg	
Nitrogen	3.541 ± 0.087 g/100 g	Magnesium	43.1 ± 3.8 mg/100 g	
Total fat	12.13 ± 0.72 g/100 g	Manganese	$3.28 \pm 0.29 \text{ mg/kg}$	
Ash	2.855 ± 0.059 g/100 g	Phosphorus	564 ± 40 mg/100 g	
Chloride	0.78 ± 0.10 g/100 g	Potassium	179 ± 11 mg/100 g	
Calcium	348 ± 35 mg/100 g	Sodium	463 ± 45 mg/100 g	
Cadmium	9.20 ± 0.48 mg/kg	Zinc	56.8 ± 5.5 mg/kg	
Copper	20.1 ± 2.4 mg/kg			

	Assessed values:				
Arsenic	13.8 ± 1.8 mg/kg	Cobalt	0.131 ± 0.022 mg/kg		
Indicative values:					
Aluminium	Range 1 – 4 mg/kg	Nickel	Range 0.1 – 1.1 mg/kg		
Chromium	Range 0.05 – 1.0 mg/l	kg Seleniu	m Range 1.4 – 4.0 mg/kg		
Mercury	Range 0.08 - 0.11mg/	'kg			

Food & Beverage Purity Materials

Butylated hydroxyanisole (BHA) ERM-AC301

A batch of butylated hydroxyanisole was obtained from a commercial supplier of chemical reagents. The purity was assessed by combining data from HPLC-UV, DSC and GC.

Batch: a Unit size: 0.5 g This material is primarily intended for use as a calibration standard in methods of analysis for BHA in foodstuffs and other similar matrices.

4005

Purity 99.2 \pm 0.6 mass %

Leucomalachite green ERM-AC303

Batch: a Unit size: 0.1 g

A batch of leucomalachite green was obtained from a commercial supplier of chemical reagents. The purity was determined by combining data from HPLC-UV and DSC.

The primary use of this reference material is for the calibration of methods for the determination of leucomalachite green in fish and other similar matrices.

4005

	1101 1		
L'Ar	tified	AV/co	HO:
-	4	1/6	

Purity 98.8 ± 0.8 mass %

p,p'-DDE LGC1110

Batch: 001 Unit size: 0.25 g A batch of p,p'-DDE was obtained from a commercial supplier, ground and dried under vacuum. The purity was assessed by combining data from GC-FID, HPLC-UV and DSC.

This material is intended for use in the preparation of solutions for the calibration of analytical instruments used in pesticide residue and formulation analysis.

Certified value:

Purity 99.6 \pm 0.4 mass %

Malathion LGC1205

Batch: 001 Unit size: 0.25 g A batch of malathion was dried at ambient temperature under vacuum. The purity was assessed by combining data from GC-FID and HPLC-UV.

This material is intended for use as a calibration standard in methods of analysis for malathion in food, environmental and other relevant matrices.

Certified value:

Purity 99.4 \pm 0.6 mass %

Butylated hydroxytoluene (BHT) LGC7300

Batch: 001 Unit size: 0.5 g A batch of butylated hydroxytoluene, obtained from a commercial supplier of chemical reagents, was ground, mixed and dispensed. The purity was determined by combining data from HPLC-UV and DSC.

This material is intended for use as a calibration standard in methods of analysis for BHT in foodstuffs and other relevant matrices.

	Certified value
Purity	99.8 + 0.2 / - 1.4 mass %

Saccharin LGC7302

Batch: 001 Unit size: 0.5 g A batch of saccharin, obtained from a commercial supplier of chemical reagents, was ground, mixed and dispensed. The purity was determined by combining data from HPLC-UV, DSC and volumetric titration with sodium hydroxide solution standardised against potassium hydrogen phthalate.

This material is intended for use as a calibration standard in methods of analysis for saccharin in foodstuffs, beverages and other relevant matrices.

4005

	Certified value:
Purity	99.6 + 0.4 / - 0.6 mass %

Potassium sorbate LGC7305

Batch: 001 Unit size: 0.5 g A batch of potassium sorbate, obtained from a commercial supplier of chemical reagents, was ground, mixed, dried over P_2O_5 and dispensed. The purity was determined by combining data from HPLC-UV and DSC.

This material is intended for use as a calibration standard in methods of analysis for potassium sorbate in foodstuffs and other relevant matrices.

	Certified value:		
Purity	99.8 ± 1.6 mass %		

Selenomethionine enriched with ⁷⁶Se LGC7330

Batch: 001 Unit size: 0.01 g A quantity of 76 Se -enriched selenomethionine was prepared from 76 Se -enriched selenium obtained from a commercial supplier. The purity was determined by HPLC-UV.

The primary use of this material is as a spike material for the determination of selenomethionine by species-specific isotope dilution with HPLC-ICP-MS, in combination with a standard of selenomethionine with natural isotopic composition.

	Certified value:	
Purity	99.8 +0.2 / -3.1 mass %	

Fruit and Vegetable Products

Kale powder - nitrate LGC7114

Batch: 001 Unit size: 10 g Dry, ground kale powder was sourced from a commercial supplier. The bulk material was combined, mixed and bottled in 10 g portions in 30 mL amber glass bottles with tamper-evident screw-cap tools. The bottled material was irradiated using gama irradiation at a dose of ~23 KGy.

This reference material is primarily intended for use in the development, validation or quality control of analytical methods for the determination of nitrate in green vegetables. The material may also be applicable to other similar matrices where more clearly matched reference materials are not available.

	Assessed value:	
Nitrate as (NO ₃)	3198 ± 79 mg/kg	

Strawberry leaves LGC7162

Batch: 001 Unit size: 20 g The raw material was collected from a private farm in the Czech Republic. The mixture was cut and jet milled to pass a 250 μm nylon sieve. The resulting powder was homogenised, separated in 20 g portions and placed in 60 mL bottles.

This material is intended for use in development, validation or quality control of analytical methods for the determination of elements in vegetation.

Certified values:				
Calcium $1.53 \pm 0.07 \text{ g}/100 \text{ g}$ Phosphorus $0.260 \pm 0.023 \text{ g}/100 \text{ g}$				
Magnesium	$0.377 \pm 0.017 \text{ g}/100 \text{ g}$	Potassium	1.96 ± 0.10 g/100 g	
Nitrogen	$2.01 \pm 0.06 \text{ g}/100 \text{ g}$	Sulfur	$0.174 \pm 0.016 \text{ g}/100 \text{ g}$	

Certified values:				
Arsenic	0.28 ± 0.07 mg/kg	Manganese	171 ± 10 mg/kg	
Barium	107 ± 10 mg/kg	Mercury	$0.027 \pm 0.006 \text{mg/kg}$	
Cadmium	$0.17 \pm 0.04 \text{mg/kg}$	Molybdenum	$0.32 \pm 0.08 \text{ mg/kg}$	
Cobalt	$0.47 \pm 0.11 \text{mg/kg}$	Nickel	$2.6 \pm 0.7 \text{mg/kg}$	
Chromium	2.15 ± 0.34 mg/kg	Strontium	64 ± 6 mg/kg	
Iron	818 ± 48 mg/kg	Zinc	24 ± 5 mg/kg	
Lead	1.8 ± 0.4 mg/kg			

Indicative values:				
Total aluminium	0.1 g/100 g	Total sodium	210 mg/kg	
Extractable aluminium	0.06 g/100 g	Extractable sodium	65 mg/kg	
Copper	10 mg/kg	Selenium	0.04 mg/kg	
Lithium	0.7 mg/kg	Vanadium	1.8 mg/kg	

Animal Feeding Stuffs

Poultry feed LGC7173

Batch: 004 Unit size: 50 g A sample of poultry feed, purchased from a commercial animal feed manufacturer, was ground to pass a 1 mm sieve, thoroughly mixed and vacuum-sealed in sachets as 50 g portions.

This material is intended for use in the development, validation or quality control of analytical methods for the determination of proximates and elements in animal feeding stuffs. The material may also be applicable to other similar matrices where more clearly matched reference materials are not available.

4005

	Assessed values:
Moisture	10.70 ± 0.36 g/100 g
Nitrogen	2.559 ± 0.062 g/100 g
Oil	4.95 ± 0.23 g/100 g
Ash	7.224 ± 0.091 g/100 g
Crude Fibre	$3.75 \pm 0.38 \text{ g}/100 \text{ g}$

	Assessed values:
Calcium	17800 ± 1200 mg/kg
Copper	14.0 ± 4.0 mg/kg
Iron	148 ± 27 mg/kg
Magnesium	2037 ± 81 mg/kg
Manganese	90 ± 13 mg/kg
Phosphorus	6590 ± 370 mg/kg
Potassium	7480 ± 310 mg/kg
Sodium	1180 ± 130 mg/kg
Zinc	78 ± 15 mg/kg

	Indicative values:	
Starch	41 g/100 g	
Chloride	0.23 g/100 g	

Processed Food Products

Wheat flour selenium and selenomethionine ERM-BC210

Batch: a Unit size: 30 g

Selenised wheat was obtained from a UK university. The grain was cleaned with water, milled at a temperature between 18 °C and 20 °C and 60 % relative humidity, and sieved twice to a final particle size of 140 μ m.

The primary use of this certified reference material is for the validation of methods for the determination of selenium and selenomethionine in food materials and dietary supplements.

	Certified values:	
Total selenium	17.23 ± 0.91 mg/L	
Selenomethionine	27.4 ± 2.6 mg/L	

Sugar confectionery - sugars ERM-BD016

Batch: a Unit size: 14 g A commercial supply of sugar confectionery was ground, thoroughly mixed and dispensed as 14 g units into 30 mL amber glass bottles with tamper evident caps.

This material is intended for use in development, validation or quality control of analytical methods for the determination of sugars in foodstuffs. The material may also be applicable to other similar matrices where suitable reference materials are not available.

4005

	Certified values:	
Glucose	5.74 ± 0.48 g/100 g	
Fructose	2.89 ± 0.30 g/100 g	
Sucrose	44.8 ± 1.4 g/100 g	
Maltose	17.7 ± 1.1 g/100 g	

Yeast – total chromium and Cr(III) ERM-BD213

Batch: a Unit size: 7 g

The powder form of a commercially-available food supplement of chromium-enriched yeast was donated by PharmaNord ApS (Vejle, Denmark) for the production of ERM-BD213a.

The primary intended use of this reference material is for the validation and performance monitoring of new and existing methods for the quantification of total chromium in yeast. The material can also be used for the performance monitoring of procedures for the quantification of chromium species in yeast. The material may also be applicable to other similar matrices where suitable reference materials are not available.

400

	Certified value:	
Total chromium	$305.5 \pm 5.0 \text{ mg/kg}$	

	Indicative value:	
	maiounte value.	
Cr(III)	302 ± 47 mg/kg	
CI (III)	302 ± 47 Hig/kg	

Chocolate confectionery LGC7016

Batch: 003 Unit size: 15 g A commercial supply of sugar confectionery was obtained.

This material is intended for use in development, validation or quality control of analytical methods for the determination of sugar in foodstuffs.

4005

Assessed values:				
Lactose	7.06 ± 0.96 g/100 g	Butyric acid in fat	0.677 ± 0.071 g/100 g	
Sucrose	46.5 ± 2.3 g/100 g	Nitrogen	1.274 ± 0.024 g/100 g	
Total fat	29.64 ± 0.35 g/100 g			

	Indicative values:	
Fructose	0.2 g/100 g	
Glucose	0.2 g/100 g	

	Calculated values:	
Milk in fat	19.6 g/100 g	
Milk fat in sample	5.8 g/100 g	

Sweet digestive biscuit LGC7103

Batch: 003 Unit size: 48 g Wholemeal digestive biscuits were obtained from a commercial supplier.

This material is intended for use in the development, validation or quality control of analytical methods for the determination of proximates, sugars and elements in food.

The material may also be applicable to other matrices where suitable materials are not available.

4005

Assessed values:				
Moisture	2.88 ± 0.76 g/100 g	Ash at 550°C	1.599 ± 0.077 g/100 g	
Nitrogen	1.073 ± 0.032 g/100 g	Sucrose	13.89 ± 0.53 g/100 g	
Total Fat	21.17 ± 0.45 g/100 g	Chloride	0.302 ± 0.018 g/100 g	

Assessed values:			
Sodium	5010 ± 400 mg/kg	Phosphorus	900 ± 140 mg/kg
Potassium	1580 ± 170 mg/kg	Manganese	254 ± 59 mg/kg
Magnesium	254 ± 59 mg/kg	Zinc	6.41 ± 0.99 mg/kg

Chocolate mousse dessert – peanut protein LGCQC101-KT

Batch: 001 Unit size: 2 x 5 g The materials were prepared by mixing commercial, dry food ingredients to make a paste. Peanut protein was added to LGCQC1012 using a commercial defatted peanut flour (57 g/100 g protein content).

The materials are intended for use as quality control materials for analytical methods used in the determination of peanut protein in foods.

They are not suitable for establishing method bias.

	Indicative values:
LGCQC1011	<1 mg/kg (negative control)
LGCQC1012	10 mg/kg (positive control)

Peanut flour LGCQC1020

Batch: 001 Unit size: 2 x 5 g Light roasted, partially defatted, peanut flour.

This material is intended for use as a quality control material for analytical methods used in the investigation of food samples for peanut and peanut protein.

	Indicative values:	
Total nitrogen	9.1 g/100 g	
Water	4.8 g/100 g	

	Calculated values:	
Protein	49.7 g/100 g	

Processed meat - proximates, chloride, hydroxyproline & metals LGC7155

Batch: 003 Unit size: 50 g The material was prepared using a commercial porkbased processed meat. After thorough mincing and mixing, it was sealed in sachets in 50g portions and irradiated to sterilise using a dose of 18KGy.

The material is intended for use in the development, validation or quality control of analytical methods for the determination of major constituents and selected additional analytes in meat and meat products. The material may also be applicable to other matrices and procedures where suitable reference materials are not available.

4005

	Certified values:
Moisture	55.13 ± 0.43 g/100 g
Nitrogen	2.202 ± 0.046 g/100 g
Total fat	24.23 ± 0.59 g/100 g
Ash	3.229 ± 0.059 g/100 g
Chloride	1.377 ± 0.072 g/100 g
Hydroxyproline	$0.359 \pm 0.025 \text{ g}/100 \text{ g}$

	Certified values:	
Magnesium	11.02 ± 0.73 mg/100 g	
Phosphorus	236 ± 13 mg/100 g	
Potassium	187.4 ± 8.3 mg/100 g	
Sodium	1110 ± 63 mg/100 g	

	Indicative values:
Calcium	8 mg/100g
Iron	0.6 mg/100g
Nitrate (as NO ₃)	0.6 to 25.1 mg/kg

	Calculated value:	
Salt (NaCl)	2.27 ± 0.12 g/100 g	

Allergen reference material skimmed milk powder LGC7421

<u>Batch</u>: 001 <u>Unit size</u>: 1.1 ± 0.1 g The raw material was sourced by the University of Manchester from a reputable supplier to minimise the risk of contamination, and was described as organic skimmed milk powder, produced in Austria from Austrian or EU pasteurised, skimmed milk. The skimmed milk powder was packaged as received without further processing by combining and mixing before weighing in (1.1 ± 0.1) g portions into amber glass vials. The vials were closed under argon with a rubber stopper and a crimp cap. Each unit was sealed inside a metallised sachet to minimise changes in water content.

4005

The material is intended for use in (a) method development: e.g. in the generation of allergen kit calibrator extract solutions, (b) method validation: e.g. in the generation of external check calibrator extract solutions for allergen measurements (c) recovery estimates: to spike food matrices either by way of an extract, but preferably by addition of the raw material itself to assess allergen recovery in real life situations for which no other RMs are available.

LGC7421 can also be used in the quality control of methods for the determination of nitrogen and water in food ingredients and processed food products.

	Assessed values:	
Nitrogen	5.40 ± 0.17 g/100 g	
Water	4.22 ± 0.40 g/100 g	

Allergen reference material egg white powder LGC7422

<u>Batch</u>: 001 <u>Unit size</u>: 1.1 ± 0.1 g The raw material was sourced by the University of Manchester from a reputable supplier to minimise the risk of contamination, and was described as 'Origin: Austria'. The hens' egg white powder was packaged as received by combining and mixing before weighing in (1.1 ± 0.1) g portions into amber glass vials. The vials were closed under argon with a rubber stopper and a crimp cap. Each unit was sealed inside a metallised sachet to minimise changes in water content. 550 units were packaged and stored at (5 ± 4) °C.

4005

The material is intended for use in (a) method development: e.g. in the generation of allergen kit calibrator extract solutions, (b) method validation: e.g. in the generation of external check calibrator extract solutions for allergen measurements (c) recovery estimates: to spike food matrices either by way of an extract, but preferably by addition of the raw material itself to assess allergen recovery in real life situations for which no other RMs are available.

LGC7422 can also be used in the quality control of methods for the determination of nitrogen and water in food ingredients and processed food products.

	Assessed values:	
Nitrogen	13.49 ± 0.41 g/100 g	
Water	6.01 ± 0.53 g/100 g	

Allergen reference material almond powder LGC7424

<u>Batch</u>: 001 <u>Unit size</u>: 1.1 ± 0.1 g The raw material was sourced by the University of Manchester from a reputable supplier to minimise the risk of contamination, and was described as: 'Origin: California, USA. Blanched ground almonds. The almond powder was packaged as received by combining and mixing before weighing in (1.1 ± 0.1) g portions into amber glass vials. The vials were closed under argon with a rubber stopper and a crimp cap. Each unit was sealed inside a metallised sachet to minimise changes in water content. 550 units were packaged and stored at (5 ± 4) °C.

400

The material is intended for use in (a) method development:
e.g. in the generation of allergen kit calibrator extract solutions,
(b) method validation: e.g. in the generation of external check
calibrator extract solutions for allergen measurements
(c) recovery estimates: to spike food matrices either by way of
an extract, but preferably by addition of the raw material itself to
assess allergen recovery in real life situations for which no other
RMs are available.

LGC7424 can also be used in the quality control of methods for the determination of nitrogen and water in food ingredients and processed food products.

Assessed values:		
Nitrogen	4.19 ± 0.13 g/100 g	
Water	4.22 ± 0.45 g/100 g	

Allergen reference material hazelnut powder – partially defatted LGC7425

<u>Batch</u>: 001 <u>Unit size</u>: 1.1 ± 0.1 g The raw material was sourced by the University of Manchester from a reputable supplier to minimise the risk of contamination, and was described as follows: 'Origin: South Island New Zealand Corylus avellana. Fine ground flour produced from the "cake" after the oil (fats) have been cold pressed out of raw hazelnut'. The hazelnut powder was packaged as received without further processing by combining and mixing before weighing in (1.1 ± 0.1) g portions into amber glass vials. The vials were closed under argon with a rubber stopper and a crimp cap. Each unit was sealed inside a metallised sachet to prevent changes in water content. 550 units were packaged and stored at (5 ± 4) °C.

4005

The material is intended for use in (a) method development: e.g. in the generation of allergen kit calibrator extract solutions, (b) method validation: e.g. in the generation of external check calibrator extract solutions for allergen measurements (c) recovery estimates: to spike food matrices either by way of an extract, but preferably by addition of the raw material itself to assess allergen recovery in real life situations for which no other RMs are available.

LGC7425 can also be used in the quality control of methods for the determination of nitrogen and water in food ingredients and processed food products.

Assessed values:		
Nitrogen	4.99 ± 0.16 g/100 g	
Water	8.6 ± 1.1 g/100 g	

Allergen reference material walnut powder – partially defatted LGC7426

Batch: 001 Unit size: 1.1 ± 0.1 g The raw material was sourced by the University of Manchester from a reputable supplier to minimise the risk of contamination, and was described as 'Origin: Italy. *Juglans regia* cultivar Lara. Lipid content 27 g/100g'.

The walnut powder was prepared by grinding using a centrifugal mill to pass a 0.5 mm sieve. The sieved material was combined and mixed before weighing in (1.1 \pm 0.1) g portions into amber glass vials. The vials were closed under argon with a rubber stopper and a crimp cap. Each unit was sealed inside a metallised sachet to minimise changes in water content. 550 units were prepared and stored at (5 \pm 4) °C.

4005

The material is intended for use in (a) method development: e.g. in the generation of allergen kit calibrator extract solutions, (b) method validation: e.g. in the generation of external check calibrator extract solutions for allergen measurements (c) recovery estimates: to spike food matrices either by way of an extract, but preferably by addition of the raw material itself to assess allergen recovery in real life situations for which no other RMs are available.

LGC7426 can also be used in the quality control of methods for the determination of nitrogen and water in food ingredients and processed food products.

Assessed values:		
Nitrogen	6.15 ± 0.19 g/100 g	
Water	6.11 ± 0.65 g/100 g	

Allergen kit – milk, egg, almond, hazelnut and walnut LGC746-KT

Batch: 001 Unit size: Kit

Each kit contains:
•One vial of each:
LGC7421 Skimmed milk
powder
LGC7422 Egg white powder
LGC7424 Almond powder
LGC7425 Hazelnut powder –
partially defatted
LGC7426 Walnut powder –
partially defatted

•Five bottles of: LGC7461 Chocolate paste – no added allergenic ingredients. LGC7462 Chocolate paste with added allergenic ingredients The allergen food ingredients (LGC7421, LGC7422, LGC7424, LGC7425 and LGC7426) are intended for use in method development: e.g. allergen kit calibrator extract solutions, method validation: e.g. external check calibrator extract solutions, and recovery estimates e.g. by spiking food matrices for which no RMs are available. They can also be used in the quality control of methods for the determination of nitrogen and water in food ingredients and processed food products.

The blank matrix (LGC7461) is intended for use (a) as a 'no-template' control to provide assurance of absence of in-lab allergen cross contamination (either environmentally, from personnel, or in reagents) and (b) a material to assist method limit of detection calculation (as 3.3 times the standard deviation of a 'blank' dataset).

4005

The incurred matrix (LGC7462) is intended for use

- (a) to optimise analytical recovery from a chocolate-type matrix,
- (b) inform risk assessors of the possible 'true' estimate of allergen in a questioned product, and
- (c) in checking in-house quality control materials.

Assessed values:			
LGC7421	Skimmed milk	Nitrogen	5.40 ± 0.17 g/100 g
	powder	Water	4.22 ± 0.40 g/100 g
LGC7422	Egg white powder	Nitrogen	13.49 ± 0.41 g/100 g
		Water	6.01 ± 0.53 g/100 g
LGC7424	Almond powder	Nitrogen	4.19 ± 0.13 g/100 g
		Water	4.22 ± 0.45 g/100 g
LGC7425	Hazelnut powder-	Nitrogen	4.99 ± 0.16 g/100 g
	partially defatted	Water	8.6 ± 1.1 g/100 g
LGC7426	Walnut powder-	Nitrogen	6.15 ± 0.19 g/100 g
	partially defatted	Water	6.11 ± 0.65 g 100 g

Assessed values:				
LGC7461	Chocolate paste- no added allergenic ingredients	Milk protein Egg white protein Hazelnut protein	<0.05 mg/kg allergen protein <0.05 mg/kg allergen protein <0.04 mg/kg allergen protein	
LGC7462	Chocolate paste with added allergenic ingredients	Milk protein Egg white protein	10.0 ± 1.8 mg/kg allergen protein 10.0 ± 1.5 mg/kg allergen protein	
	Indicat	ive values:		
LGC7462	Chocolate paste with added allergenic ingredients	Almond protein Hazelnut protein Walnut protein	9.7 ± 1.9 mg/kg allergen protein 9.8 +10.5/-5.1 mg/kg allergen protein 10.0 ± 2.3 mg/kg allergen protein	

Industrial

Enthalpy of Fusion Materials

Indium LGC2601 A suitable supply of indium was obtained with a nominal purity of 99.9999 mol %

Batch: 003 Unit size: 0.5 g This material is intended for the calibration of differential scanning calorimeters and similar instruments.

4005

Certified values:		
Enthalpy of fusion	28.69 ± 0.09 J/g	
Melting temperature	156.66 ± 0.19 °C	

Naphthalene LGC2603 A suitable supply of pure material was obtained and purified by zone refining.

Batch: 002 Unit size: 0.5 g This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Certified values:		
Enthalpy of fusion	18.923 ± 0.083 kJ/mol	
Melting temperature	80.25 ± 0.03 °C	

Benzil LGC2604 The bulk material was purified by repeated fractional freezing from the melt.

Batch: 002 Unit size: 0.5 g This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Certified values:		
Enthalpy of fusion	23.26 ± 0.10 kJ/mol	
Melting temperature	94.85 ± 0.02 °C	

Acetanilide LGC2605

Batch: 005 Unit size: 0.5 g A suitable supply of pure material was obtained. Using differential scanning calorimetry (DSC) and adiabatic calorimetry the measured mole fraction of purity was 99.98 % and 99.996 % respectively.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Certified	values:

Enthalpy of fusion 21.793 ± 0.085 kJ/mol

Melting temperature 114.34 ± 0.02 °C

Benzoic acid LGC2606

The bulk material was purified by repeated fractional freezing from the melt.

Batch: 002 Unit size: 0.5 g This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Certified values:

Enthalpy of fusion 17.98 ± 0.04 kJ/mol

Melting temperature 122.35 ± 0.03 °C

Diphenylacetic acid LGC2607

Batch: 006 Unit size: 0.5 g A suitable supply of pure material was obtained. The purity of the material was assessed by adiabatic calorimetry; the measured mole fraction was 99.98 %.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Certified values:

Enthalpy of fusion 31.16 \pm 0.13 kJ/mol Melting temperature 147.19 \pm 0.03 °C

Lead LGC2608

Batch: 001 Unit size: 0.5 g A suitable supply of pure material was obtained. The purity of the material was assessed by adiabatic calorimetry; the measured mole fraction was 99.9995 %.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Certified values:

Enthalpy of fusion $4.765 \pm 0.012 \text{ kJ/mol}$ Melting temperature $327.47 \pm 0.02 \text{ °C}$

Tin LGC2609

Batch: 001 Unit size: 0.5 g A suitable supply of pure material was obtained. The purity of the material was assessed by adiabatic calorimetry; the measured mole fraction was 99.9995 %.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Certified values: 7.187 ± 0.011 kJ/mol

Melting temperature 231.92 ± 0.02 °C

Enthalpy of fusion

Biphenyl LGC2610

Batch: 001 Unit size: 0.5 g A suitable supply of biphenyl was obtained and purified by repeated fractional freezing from the melt. The purity of the material was assessed by Adiabatic calorimetry; the measured mole fraction was 99.992 %.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Certified values: Enthalpy of fusion 18.60 ± 0.11 kJ/mol Melting temperature 68.93 ± 0.02 °C

Zinc LGC2611

Batch: 001 Unit size: 0.5 g A suitable supply of pure material was obtained. The purity of the material was assessed by Adiabatic calorimetry; the measured mole fraction was 99.9998 %.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Certified values:		
Enthalpy of fusion	7.103 ± 0.034 kJ/mol	
Melting temperature	419.53 ± 0.02 °C	

Aluminium LGC2612

Batch: 001 Unit size: 0.5 g A suitable supply of pure material was obtained. The purity of the material was assessed by Adiabatic calorimetry; the measured mole fraction was 99.9995 %.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Certified values:			
Enthalpy of fusion	10.827 ± 0.052 kJ/mol		
Melting temperature	660.33 ± 0.05 °C		

Phenyl Salicylate LGC2613

Batch: 001 Unit size: 0.5 g A commercial supply of phenyl salicylate was obtained and purified by fractional crystallisation. The purity of the material was assessed by Adiabatic calorimetry; the measured mole fraction was 99.994 %.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Certified values:		
Enthalpy of fusion	19.18 ± 0.08 kJ/mol	
Melting temperature	41.79 ± 0.03 °C	

Flash Point Materials

n-Nonane ERM-FC032

A supply of n-nonane, of nominally 99 % purity, was obtained from a commercial supplier.

<u>Batch</u>: a <u>Unit size</u>: 100 mL This material is intended for use in validation work, or in quality control procedures, for the determination of non-equilibrium flashpoint determined by the Abel closed cup method as described in the Institute of Petroleum Standard IP170/95, and also published as British Standard BS2000:Part 170: 1995.

4005

Certified values:

Non-equilibrium flashpoint 32.5 ± 0.5 °C

n-Decane ERM-FC033

A supply of n-decane, of nominally 99 % purity, was obtained from a commercial supplier.

Batch: a Unit size: 100 mL

This material is intended for use in validation work, or in quality control procedures, for the determination of non-equilibrium flashpoint determined by the Abel closed cup method as described in the Institute of Petroleum Standard IP170/95, and also published as British Standard BS2000: Part 170: 1995.

4005

Certified values:

Non-equilibrium flashpoint 50.0 ± 0.9 °C

Gypsum Materials

Natural gypsum – major oxides and trace elements LGC2700

Batch: 001 Unit size: 75 g Natural gypsum, in the form of small chippings, was obtained from British Gypsum (East Leake, Leicestershire, UK). The material was prepared using a jaw crusher fitted with hardened chromium steel jaws to provide a powder, nominally 3 mm maximum diameter. The crushed material was dried at 30 $^{\circ}\text{C}$ in a calibrated drying oven. After drying, the material was milled until the powder passed a calibrated 75 μm stainless steel sieve mesh.

4005

This reference material is intended for use in the validation of new methods, and for monitoring the performance of methods commonly used in laboratories to analyse samples of gypsum for quality control and environmental monitoring purposes.

Certified value:		
Mercury	1.35 ± 0.40 μg/kg	

Assessed values:			
Aluminium (as Al ₂ O ₃)	2.872 ± 0.056 g/100 g		
Calcium (as CaO)	26.31 ± 0.36 g/100 g		
Iron (as Fe ₂ O ₃)	1.150 ± 0.062 g/100 g		
Phosphorus (as P₂O₅)	0.0367 ± 0.0052 g/100 g		
Potassium (as K₂O)	0.830 ± 0.024 g/100 g		
Silicon (as SiO₂)	10.93 ± 0.22 g/100 g		
Sodium (as Na₂O)	0.183 ± 0.018 g/100 g		
Sulfur (as SO₃)	34.67 ± 0.60 g/100 g		
Titanium (as TiO ₂)	0.1480 ± 0.0075 g/100 g		
Loss on ignition	19.78 ± 0.71 g/100 g		
Nickel	9.5 ± 2.0 mg/kg		
Vanadium	21.3 ± 3.2 mg/kg		
Zinc	19.3 ± 3.8 mg/kg		

Inc	licative values:	
Magnesium (as MgO)	3.2 g/100 g	
Manganese (as MnO)	0.030 g/100 g	
Strontium (as SrO)	0.20 g/100 g	
Arsenic	2.4 mg/kg	
Barium	170 mg/kg	
Chromium	15 mg/kg	
Copper	5.0 mg/kg	
Lead	4.2 mg/kg	
Thallium	0.18 mg/kg	

Natural anhydrite – major oxides and trace elements LGC2701

Batch: 001 Unit size: 75 g Anhydrite, in the form of coarse chippings, was obtained from British Gypsum (East Leake, Leicestershire, UK). The material was prepared using a jaw crusher fitted with hardened chromium steel jaws to provide a powder, nominally 3 mm maximum diameter. The crushed material was dried at 30 °C in a calibrated drying oven. After drying, the material was milled until the powder passed a calibrated 75 μm stainless steel sieve mesh.

This reference material is intended for use in the validation of new methods, and for monitoring the performance of methods commonly used in laboratories to analyse samples of gypsum for quality control and environmental monitoring purposes.

Certified value:

Certified value.		
Mercury	2.33 ± 0.18 μg/kg	
Α	ssessed values:	
Aluminium (as Al ₂ O ₃)	0.045 ± 0.029 g/100 g	
Calcium (as CaO)	40.82 ± 0.67 g/100 g	
Iron (as Fe ₂ O ₃)	0.0280 ± 0.0096 g/100 g	
Phosphorus (as P ₂ O ₅)	0.0069 ± 0.0040 g/100 g	
Potassium (as K ₂ O)	0.0105 ± 0.0050 g/100 g	
Silicon (as SiO ₂)	0.112 ± 0.044 g/100 g	
Sulfur (as SO ₃)	57.8 ± 1.2 g/100 g	
Loss on Ignition	0.452 ± 0.093 g/100 g	

In	dicative values:
Magnesium (as MgO)	0.080 g/100 g
Manganese (as MnO)	0.0025 g/100 g
Sodium (as Na2O)	0.023 g/100 g
Strontium (as SrO)	0.18 g/100 g
Titanium (as TiO ₂₎	0.0066 g/100 g
Arsenic	0.16 mg/kg
Chromium	4.4 mg/kg
Cobalt	0.35 mg/kg
Copper	3.5 mg/kg
Lead	1.6 mg/kg
Nickel	1.9 mg/kg
Vanadium	2.6 mg/kg
Zinc	1.6 mg/kg

Blended gypsum – major oxides and trace elements LGC2702

Batch: 001 Unit size: 75 g Blended gypsum, in the form of chippings and powders, was obtained from British Gypsum (East Leake, Leicestershire, UK). The material was dried at 30 $^{\circ}\text{C}$ in a calibrated drying oven, then ball-milled in a cleaned 250 mL capacity agate milling vessel until the powder passed a calibrated 75 μm stainless steel sieve mesh.

This reference material is intended for use in the validation of new methods, and for monitoring the performance of methods commonly used in laboratories to analyse samples of gypsum for quality control and environmental monitoring purposes.

	Certified value:	
Mercury	420 ± 35 μg/kg	

Assessed values:			
Aluminium (as Al ₂ O ₃)	1.121 ± 0.038 g/100 g		
Calcium (as CaO)	31.47 ± 0.65 g/100 g		
Iron (as Fe₂O₃)	0.392 ± 0.036 g/100 g		
Phosphorus (as P ₂ O ₅)	0.0177 ± 0.0079 g/100 g		
Potassium (as K₂O)	0.196 ± 0.013 g/100 g		
Silicon (as SiO ₂)	3.01 ± 0.12 g/100 g		
Sulfur (as SO ₃)	41.26 ± 0.69 g/100 g		
Titanium (as TiO₂)	0.0550 ± 0.0049 g/100 g		
Loss on ignition	21.32 ± 0.21 g/100 g		
Lead	8.4 ± 2.1 mg/kg		
Nickel	4.8 ± 1.4 mg/kg		
Vanadium	10.5 ± 1.5 mg/kg		
Zinc	11.7 ± 3.1 mg/kg		

Inc	dicative values:
Magnesium (as MgO)	0.92 g/100 g
Manganese (as MnO)	0.011 g/100 g
Sodium (as Na ₂ O)	0.031 g/100 g
Strontium (as SrO)	0.13 g/100 g
Arsenic	2.4 mg/kg
Barium	43 mg/kg
Chromium	9.0 mg/kg
Cobalt	1.8 mg/kg
Copper	4.4 mg/kg
Selenium	5.1 mg/kg
Thallium	0.18 mg/kg

Desulfurised gypsum – major oxides and trace elements LGC2703

Batch: 001 Unit size: 75 g Desulfurised (DSG) gypsum, in powder form, was obtained from British Gypsum (East Leake, Leicestershire, UK). The material was dried at 30 °C in a calibrated drying oven. After drying the material was ball-milled in a cleaned 250 mL capacity agate milling vessel until the powder passed a calibrated 75 μ m stainless steel sieve mesh.

4005

This reference material is intended for use in the validation of new methods, and monitoring the performance of methods commonly used in laboratories to analyse samples of gypsum for quality control and environmental monitoring purposes.

Mercury	646 ± 42 μg/kg
As	sessed values:
Aluminium (as Al ₂ O ₃)	0.459 ± 0.031 g/100 g
Calcium (as CaO)	32.45 ± 0.86 g/100 g
Iron (as Fe ₂ O ₃)	0.142 ± 0.023 g/100 g
Phosphorus (as P ₂ O ₅)	$0.0120 \pm 0.0042 \text{ g}/100 \text{ g}$
Potassium (as K₂O)	0.0340 ± 0.0075 g/100 g
Silicon (as SiO₂)	0.90 ± 0.12 g/100 g
Sulfur (as SO₃)	44.84 ± 0.55 g/100 g
Titanium (as TiO₂)	0.0325 ± 0.0046 g/100 g
Loss on ignition	21.21 ± 0.35 g/100 g
Nickel	3.2 ± 1.3 mg/kg
Vanadium	6.0 ±1.8 mg/kg
Zinc	9.5 ± 2.0 mg/kg

Certified value:

Indicative values:			
Magnesium (as MgO)	0.16 g/100 g		
Manganese (as MnO)	0.0040 g/100 g		
Sodium (as Na ₂ O)	0.022 g/100 g		
Strontium (as SrO)	0.012 g/100 g		
Arsenic	3.5 mg/kg		
Chromium	7.9 mg/kg		
Cobalt	0.92 mg/kg		
Copper	2.8 mg/kg		
Lead	3.6 mg/kg		
Selenium	11 mg/kg		
Thallium	0.076 mg/kg		

Melting Point Materials

Carbazole ERM-FC021

A batch of commercial carbazole was purified by recrystallisation and vacuum sublimation, then ground, homogenised and dried.

Batch: a Unit size: 0.25 g

This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Certified value:

Liquefaction point 245.41 ± 0.29 °C

2-Chloroanthraquinone ERM-FC022

A batch of commercial 2-chloroanthraquinone was purified by recrystallisation, then ground, homogenised and dried.

Batch: a Unit size: 0.25 g

This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Certified value:

Liquefaction point 209.73 ± 0.24 °C

Anisic acid ERM-FC023

A batch of commercial anisic acid was ground, homogenised and dried.

Batch: a Unit size: 0.25 g

This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Certified value:

Liquefaction point 183.50 ± 0.31 °C

Diphenylacetic acid ERM-FC024

A batch of commercial diphenylacetic acid was ground, homogenised and dried.

Batch: a Unit size: 0.25 g This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Certified value:

Liquefaction point 147.26 ± 0.31 °C

Benzoic acid LGC2405

A batch of commercial benzoic acid was purified by fractional crystallisation, then ground, homogenised and dried.

Batch: 007 Unit size: 0.25 g

This material is intended for use in checking and Calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

Certified value:

Liquefaction point 122.35 ± 0.12 °C

Acetanilide ERM-FC026

A batch of commercial acetanilide was ground, homogenised and dried.

Batch: a Unit size: 0.25 g

This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Certified value:

Liquefaction point 114.19 ± 0.28 °C

Benzil ERM-FC027

A batch of commercial benzil was ground, homogenised and dried.

Batch: a Unit size: 0.25 g This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Certified value:

Liquefaction point 94.90 ± 0.24 °C

Naphthalene ERM-FC028

A batch of commercial naphthalene was ground, homogenised and dried.

Batch: a Unit size: 0.25 g

This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Certified value:

Liquefaction point 80.34 ± 0.22 °C

4-Nitrotoluene ERM-FC029

A batch of commercial 4-nitrotoluene was purified by fractional crystallisation, then ground, homogenised

and dried.

Batch: a Unit size: 0.25 g This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Certified value:

Liquefaction point

51.66 ± 0.18 °C

Phenyl salicylate ERM-FC030

A commercial supply of phenyl salicylate was obtained and the purity of the material was assessed by High Performance Liquid Chromatography.

Batch: a Unit size: 0.25 g

This material is intended for use in checking and Calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Certified value:

Liquefaction point

41.82 ± 0.30 °C

Miscellaneous Materials

All Miscellaneous Materials

Solvent yellow 124 (SY 124) ERM-AC316 A batch of Solvent Yellow 124 was obtained from a commercial source. The purity of the material was determined by HPLC-UV and GC.

Batch: a Unit size: 0.2 g This material is intended for use as an analytical standard for the determination of SY124 in fuel.

	Certified value:	
Purity	95.0 ± 1.2 mass %	

Petrol – sulfur ERM-EF212

This material is a petroleum product containing sulfur in its natural forms, closely matching commercial petrol fuels.

Batch: a Unit size: 19 mL

This material is intended for use in the development, validation or quality control of analytical methods for the determination of sulfur in petrol.

4005

	Certified value:
Sulfur	20.2 ± 1.1 mg/kg

Electronic cigarette liquid - nicotine & water ERM-DZ002 This material was certified for not only the concentration of nicotine in an e-liquid at a level close to legislative limits but also for the water content. Both values were determined using in-house analytical methods accredited to ISO/IEC 17025.

Batch: a Unit size: 1.2 mL

This material has been accepted as a European Reference Material (ERM®) following peer-review, with homogeneity and short-term stability studies carried out.

The intended use of this material is for validation and quality control of methods for the determination of nicotine and water content in e-liquids. It can also be used in the training and evaluation of staff.

	Certified values:
Nicotine	17.12 ± 0.47 mg/g
Nicotine	18.39 ± 0.52 mg/mL
Water	10.76 ± 0.91 g/100 g

Colloidal gold nanoparticle - nominal diameter 30 nm LGCQC5050

Batch: 001 Unit size: 5.2 mL This Quality Control material is intended, primarily, to evaluate and qualify methodology and/or instrument performance related to the number-based characterisation of nanoscale particles, including particle concentration and diameter.

Assessed value:

Number particle concentration $(1.47 \times 10^{11}) \pm (2.8 \times 10^{10})$ NP/g

Indicative values:

Particle modal diameter $32.7 \pm 2.0 \text{ nm}$ Gold mass fraction $45.1 \pm 1.5 \text{ mg/kg}$

Coming soon

LGC6012	Hard drinking water- anions
LGC6013	Soft drinking water - anions
LGC7140	Soft drink with colours
LGC7161	Tomato paste

www.lgcgroup.com/nml

measurement@lgcgroup.com +44 (0)20 8943 7393 • LGC Queens Road, Teddington, Middlesex, TW11 0LY, UK

